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On Friday we had defined integrals of complex-valued functions f(z) from real
number domains, i.e. f: [a, b]— C. And we computed one such integral. We'll pick
that discussion up today, and use those elementary integrals to define the more
specialized contour integrals that are a key construction in complex analysis, and which
are actually complex versions of [ine integrals
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that you've worked with in multivariable calculus classes.
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2.1 Integration of complex-valued functions of a real variable ¢, just as in Calc 1.

Introduction to contour integrals - analogous to /ine integrals from multivariable
Calculus.

® Al Def: For f:[a, b] & R— C continuous, f(¢)=u(t) + iv(t), with
u=Re(f), v=Im(f)
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®© Jf(t) dt=J w(t) + i v(1) de :ZJu(t) dr + iJ v(1) dr.
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It is useful for estimates to note that since_u, v are continuous on [a, b] they are
uniformly continuous - and you proved in Math 3210 that in this case definite integrals

are limits of Riemann sums for partionings P of [a, b], as the "norm" of the partition
approaches zero: For
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Example 1: Use Calc 1 FTC to compute T f(4)
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What we did in the previous example works in general:

A3 Fundamental Theorem of Calculus for f:[a, b]—=C: Letu,v:[a, b]—R
continuous, f(¢) =u(t) +1iv(t), F(t) suchthat F'(¢) =f(¢). Then
Fi) = Vs < V(L)
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Use the triangle inequality on Riemann sums to prove the important integral estimate
which bounds the modulus of definite integrals in terms of the integrals of their
modulus:
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Bl Def Let A = C open, f:A— C continuous, y: [a, b] S R—C a C' curve. Then

the complex line integral or contour integral — T
of $@)da oven ¥ (ab) C <
b
: Jf(z) dz = Jf(v(t))v’(t) dt 7 = Tlt)
j C g A da = ¥ ()44

where we use the definition 4/ on the previous ?)age to compute the integral on the
right. Note, we have substituted z="y(#) and used the differential substitution,
dz="'(t)dt into the integrand.

B2 1In the case that y' (¢) # 0 for any t it foljows from the continuity of |y | that
Iy’ (¢)] =8> 0on [a, b] .
realized as a limit whi

1s case the co line integral above can be
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The reason this is true is that by the 3210 or 3220 affine approximation formula for the
C1 curve v,
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where one can show that the |8( t) | — 0 uniformly as || P|| — 0 because v is

continuously differentiable. Also, because M > |y’ (¢)| > & the condition that
max {|Az]‘} — 0 in Cis equivalent to the ||P|| —0 in [a, b], also because of the

approximation formula. So,
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Example 2: Let y(¢t) = ¢ , 05t <

n Q)
—, f(z) =z. Compute
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Sketch. Do you think you would get the same a%uzr if you followed the same quarter

circle in the same diréction, but with a different parameterization? What if you reversed

direction? Could vou explain why?
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B3 Theorem FTC for contour integrals Let A & C open, f: A— C continuous,
Y:ila, )] ER—C a C! curve.@ has an analytic antiderivative in 4, 1.e. F ’iD
then complex line integrals only depend on the endpoints of the curve vy, via the formula
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Example 3: Redo Example 2 using the FTC for contour integrals:
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B4 Integral estimate: Let 4 & C open, f: A — C continuous, y: [a, b)] E R—C a

1
C curve. Then . .
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Def Let A = C open, f:A— C continuous, y: [a, b)] E R—C a C' curve. Then
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Using the definition, we see that the shorthand for the integral estimate in B3 is
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Example 4: In the running example we showed that for y(z) =¢' t, 0<t<
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Example 5. Consider a circle of positive radius a centered at any point z, € C. Find

an appropriate parameterization which traverses this circle once in the counterclockwise
direction and verify one of the most-used contour integral equalities in complex analysis:

[
| 1

J‘z—zo|=az_zo

dz =2mi.

5b) In an effort to tie this computation in to the FTC for contour integrals, could you
compute this integral in that way? (The answer is yes, if you're careful!)



The connection between contour integrals and Calc 3 line integrals:

Let A = C open, f: 4— C continuous, Y: [a, b] ER—C a C' curve. write

Y(2) =x(1) + iy(2),
f(2) =u(x,y) + iv(x, y).

Then
b
| 7@ a2t [ r(v)y oy ar
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= [ o), p0) + 0, 1 0) (0 (1) + 17 () d
b

=Judx—vdy—|—iJvdx—|—udy.

On Wednesday we'll combine this Calc 3 line integral way of writing contour integrals
with Calc 3 Green's Theorem, for some interesting section 2.2 results.



